Página principal
Localizar el contenido del sitio
    • Acerca de
    • Historia
    • ¿Quién era Vera Rubin?
    • Actualizaciones de la construcción
      • Rubin en Chile
      • Cerro Pachón
      • Selección del emplazamiento del observatorio
      • Organización del observatorio
      • Liderazgo
      • Colaboraciones científicas
    • Información de financiamiento
      • Trabaje con nosotros
      • Trabajos
    • Información de contacto
    • Explore
      • Cómo funciona Rubin
      • Investigación del Espacio-Tiempo como Legado para la Posteridad (LSST)
      • Tecnología de Rubin
      • Flujo de alertas
      • Rubin en cifras
    • Objetivos científicos
    • Voces de Rubin
    • Involúcrate en la investigación de Rubin
      • Actividades, juegos y más
      • Juego Space Surveyors
      • Serie de videos animados
      • ¡Únete a la foto grupal de 3.200 megapíxeles del Observatorio Rubin!
    • Galería
      • Galería Principal
    • Presentaciones de Diapositivas
    • Webcam de la cumbre
    • Planetarium Assets
    • Construction Archive Gallery
    • Media Use Policy
    • Noticias
    • Comunicados de Prensa
      • Primera Luz del Observatorio Vera Rubin
      • Celebraciones de las primeras imágenes de Rubin
    • Recursos de medios
    • Comunicados de Prensa
    • Pautas de Estilo
    • Para los científicos
    • Ciencia ciudadana
    • Educación
    • Preguntas frecuentes - Educación
    • Educadores
    • Glosario
    • Investigaciones
    • Calendario
Localizar el contenido del sitio
  • Trabaja con nosotros
  • Intranet (en inglés)
  • Guía de identidad visual (en inglés)
  • Galería
  • Política de privacidad

Contáctenos

La Fundación Nacional de Ciencias (NSF) y la Oficina de Ciencias del Departamento de Energía (DOE) apoyarán al Observatorio Rubin en su fase de operaciones para conducir la Investigación del Espacio-Tiempo como Legado para la Posteridad. También apoyarán la investigación científica con los datos. Durante sus operaciones, el financiamiento de la NSF lo administra la Asociación de Universidades para la Investigación en Astronomía (AURA, por su sigla en inglés) bajo un acuerdo colaborativo con la NSF, y el financiamiento del DOE lo administra Laboratorio Nacional de Aceleradores SLAC (SLAC, por su sigla en inglés), bajo un contrato con el DOE. El Observatorio Rubin es operado por el Laboratorio Nacional de Investigación para la Astronomía Óptica-Infrarroja de la NSF (NOIRLab) y por el SLAC.

La NSF es una agencia independiente creada por el Congreso de los Estados Unidos en 1950 para promover el progreso de la ciencia. La NSF apoya la investigación básica y las personas para crear conocimiento que contribuya a la transformación del futuro.

La oficina de Ciencias de DOE es la mayor fuente de financiamiento de la investigación básica en ciencias físicas en los Estados Unidos y está trabajando para hacer frente a algunos de los retos más desafiantes de nuestro tiempo.

Conecta con nosotros

  • Visite el Observatorio Rubin en Facebook
  • Visite el Observatorio Rubin en Instagram
  • Visite el Observatorio Rubin en LinkedIn
  • Visite el Observatorio Rubin en Twitter
  • Visite el Observatorio Rubin en YouTube
    1. Educación
    2. Educadores
    3. Investigaciones
    4. Fenómeno

    Fenómeno

    Investigation Driving Question

    How are stars different from each other?

    Storylines

    The storyline process is intended to be student-driven and connect lessons within the unit. The Stellar Safari investigation, including this phenomenon, would fit best into unit storylines geared toward understanding the properties of stars including the Sun.

    Possible storylines include:

    • What determines the rate and types of fusion in stars and how does the fusion rate create specific stellar properties?

    • How do the characteristics of the Sun (such as lifetime, temperature, luminosity or size) compare with the properties of other main sequence stars?

    • How do stars like the Sun evolve as they age? What causes the changes?

    • How can star clusters be used to study the relative properties of a group of stars?

    • How can the distance and age of a star cluster be determined?

    Instructions for Introducing Phenomenon

    Arrange a Driving Question Board

    Before class starts, arrange a Driving Question Board (DQB) to be used during class. The board should be visible to all students. This can be created using sticky notes or in a digital format (see other resources here). The DQB should include the investigation driving question, “How are stars different from each other?” Students will revisit the DQB throughout the lesson to expand upon their original understandings and ask questions to better explain the supporting phenomenon. If you have a driving question for the unit or have already created a DQB board, this investigation driving question can be used as a sub-question.

    Print Star Cards

    Print the star card sets listed below. Students will be working in small groups for this activity. There are four different sets of star cards. Print enough sets of star cards for each group to have one set.

    Star Cards Cluster 1 - print 2 pages (104.29 kB)Star Cards Cluster 2 - print 2 pages (108.01 kB)Star Cards Cluster 2 - print 2 pages (1.97 MB)

    Introduce the Phenomenon

    1. Explain to the students that they will be going on a stellar “safari”, observing and gathering information about stars (rather than animals).

    2. Place students in small groups and give each group a set of star cards. When each group receives their cards, they should begin observing their stars, looking for patterns.

    3. Next, give students five minutes to work with their group to organize their set of stars. There are no restrictions or guidelines for how they should organize their stars. You can encourage groups to be creative or to consider prior knowledge.

    4. After five minutes, or when the groups are finished organizing their set of stars, go on a gallery walk around the room as a class. As you stop together at each group, ask the group to explain to the class how they organized their set of star cards. Optional: after the gallery walk, challenge students to find a new way to organize their star cards.

    5. After the gallery walk, present the students with the investigation driving question, “How are stars different from each other?” Hold a class brainstorming session with students working dynamically on whiteboards and sticky notes to share ideas or responses to the driving question. Encourage students to think about some of the properties they saw on their star cards. Then facilitate a class discussion, identifying common themes.

    6. Then, ask students to individually generate questions that will lead to further investigation of this topic. Students should place their questions on the driving question board. Work with the students to organize the driving question board by common themes in the questions. Examples:

    Example Category

    Example Student Questions

    Mass

    How does the mass of a star impact its lifetime?

    Temperature & Color

    • Why do stars have different colors?
    • Does the color of a star change over time?

    Age & Lifespan

    • How does a star change over time?

    • What factor(s) determines a star’s lifespan?

    7. Explain to students that they will be completing an investigation that will help them answer this driving question and the questions they have generated. If questions remain after the investigation, encourage independent study to explore these questions further.

    8. Begin the Stellar Safari Investigation.

    After the Investigation - Making Sense of the Phenomenon

    Begin by printing the star cluster CMDs with fitted isochrones. Each group should have their own set of CMDs. The star cluster CMDs should not be labeled.

    Star Cluster NGC188 (131.16 kB)Star Cluster NGC2323 (131.52 kB)Star Cluster NGC2360 (141.19 kB)
    1. Hold a class discussion as students look back at the remaining questions on the DQB. What questions can we answer? What additional questions do you have? Encourage students to independently investigate any remaining questions they have.
    2. Ask students to work in their small groups and revisit their star cluster CMD from the first checkpoint of the investigation. Or, ask students to organize their star cards (or a new set of star cards) according to the axes of a CMD.
    3. Provide students with each of the star cluster CMDs (not labeled).
    4. Ask students to work with their groups to analyze the isochrones for each cluster and determine which CMD represents their star cluster.
    5. Ask students to then explain the evolutionary state of their star cluster using the turn off point of the isochrone as their guide.
      The evolutionary states of the star clusters will vary. Explanations should include details about the mass of the main-sequence stars near the turnoff points. The lower the turnoff points, the older the star cluster.

    Published ages of the star clusters:

    • NGC188 Cluster 1 - 9.7 Gyrs
    • NGC2323 Cluster 2 - 8.3 Gyrs
    • NGC2369 Cluster 3 - 9.0 Gyrs

    Youngest to oldest: Cluster 2, Cluster 3, Cluster 1

    Back to Stellar Safari