Homepage
Localize site content
    • About
    • History
    • Who was Vera Rubin?
    • Construction Updates
      • Rubin in Chile
      • Cerro Pachón
      • Observatory Site Selection
      • Organization
      • Leadership
      • Science Collaborations
    • Funding Information
      • Work With Us
      • Jobs Board
    • Explore
      • How Rubin Works
      • Legacy Survey of Space and Time (LSST)
      • Rubin Technology
      • Alert Stream
      • Rubin Numbers
    • Science Goals
    • Rubin Voices
    • Get Involved in Rubin Research
      • Activities, Games, and More
      • Space Surveyors Game
      • Animated Video Series
      • Join Rubin Observatory’s 3200-Megapixel Group Photo!
    • Gallery
      • Main Gallery
    • Slideshows
    • Construction Archive Gallery
    • Media Use Policy
    • News
    • Press Releases
      • Rubin Observatory First Look
      • Rubin First Look Watch Parties
    • Media Resources
    • Press Releases
    • Name Guidelines
    • For Scientists
      • News, events, and deadlines
      • Rubin Science Assemblies
      • Rubin Data Academy
      • Rubin Community Workshop
      • Resources for scientists
      • Rubin Community Forum
      • Early Science Program
      • Workshops and seminars
      • Tutorials
      • LSST Discovery Alliance
      • Code of Conduct
      • Survey, instruments, and telescopes
      • Key numbers
      • The Legacy Survey of Space and Time (LSST)
      • Instruments
      • Telescopes
      • Data products, pipelines, and services
      • Data access and analysis
      • Recent data releases
      • Alerts and brokers
      • Data processing pipelines
      • Future data products
      • Data Policy
      • Simulation software
      • Documentation and publications
      • Technical documentation
      • How to cite Rubin Observatory
      • Publication policies
      • Glossary & Acronyms
      • Science Collaborations
      • Galaxies Science Collaboration
      • Stars, Milky Way, and Local Volume Science Collaboration
      • Solar System Science Collaboration
      • Dark Energy Science Collaboration
      • Active Galactic Nuclei Science Collaboration
      • Transients and Variable Stars Science Collaboration
      • Strong Lensing Science Collaboration
      • Informatics and Statistics Science Collaboration
    • Citizen Science
      • Committees and teams
      • Science Advisory Committee (SAC)
      • Survey Cadence Optimization Committee (SCOC)
      • Users Committee
      • Community Science Team (CST)
      • Research Inclusion Working Group (RIWG)
      • Project Science Team (PST)
    • Frequently Asked Questions
    • Education
    • Education FAQs
    • Educators
    • Glossary
    • Investigations
    • Calendar
Localize site content

Let's Connect

  • Visit the Rubin Observatory on Facebook
  • Visit the Rubin Observatory on Instagram
  • Visit the Rubin Observatory on LinkedIn
  • Visit the Rubin Observatory on Twitter
  • Visit the Rubin Observatory on YouTube
  • Jobs Board
  • Intranet
  • Visual Identity Guide
  • Image Gallery
  • Privacy Policy

Contact us

The U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) Office of Science will support Rubin Observatory in its operations phase to carry out the Legacy Survey of Space and Time. They will also provide support for scientific research with the data. During operations, NSF funding is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF, and DOE funding is managed by SLAC National Accelerator Laboratory (SLAC), under contract by DOE. Rubin Observatory is operated by NSF NOIRLab and SLAC.

NSF is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Funding agency logos
  1. News
  2. UA Mirror Lab to Cast Two Mirrors in One for the LSST
M1M3 Acceptance Team

Related News Posts

Loading the News...
Go Back to News Posts

UA Mirror Lab to Cast Two Mirrors in One for the LSST

March 17, 2008
The University of Arizona's Steward Observatory Mirror Laboratory is about to cast a new kind of giant optic for a unique wide-field survey telescope, the Large Synoptic Survey Telescope. The telescope will be the widest, fastest, deepest eye of the new digital age. Mirror Lab workers will begin loading 51,900 pounds of glass into the mirror mold early today.

The Mirror Lab will cast two mirrors as a single piece of glass for the telescope, known as the LSST, this month. The lab will cast an outer 27-foot-diameter (8.4 meter) primary mirror and an inner 16.5-foot-diameter (5-meter) third mirror in one mold. It is the first time a combined primary and tertiary mirror will be produced on such a large scale.

The LSST will be the world's largest, most powerful wide-angle survey telescope. It will provide time-lapse digital imaging across the entire available night sky every three days, enabling astronomers anywhere simultaneous access to study supernovae, planet-approaching asteroids or comets and other dynamic celestial chance events, and explore the nature of dark matter and dark energy.

Normally, big telescopes see a patch of sky the size of a tiny piece of Earth's moon. The LSST will see a section of sky roughly 40 times the size of the full moon. Each image will be recorded at high resolution by a 3.2 billion-pixel camera arrayed in a 2- foot (64 centimeter) detector, the world's largest.

The LSST will be built on Cerro Pachón, an 8,800-foot, or nearly 2,700-meter, mountain peak in northern Chile. Private and public partners, collaborating as the LSST Corp., plan to begin the survey in 2014 or 2015.

The LSST will use three mirrors. The outer region of the 27-foot primary mirror will collect celestial light and reflect it up to the separate 11-foot (3.4-meter) secondary mirror. The secondary mirror bounces light back down to the telescope's 16-foot tertiary mirror, which then sends it up again into a camera at the center of the secondary mirror. This complex down-up, down-up optical light path is needed to acquire the wide field-of-view.

The conservative approach would have been to cast the first and third LSST mirrors separately, Mirror Lab Director and Regents' Professor of Astronomy Roger Angel said. Ten years ago, he proposed the telescope design that has evolved into the LSST.

"But it costs almost as much to cast a 5-meter third mirror as it does to cast an 8- meter primary," Angel said. "If we put these in the same piece of glass, that saves how much glass you have to use all together, as well as the time it takes to cast two mirrors."

Another, possibly greater, advantage is that by making the two mirrors in one, the two mirrors can be precisely aligned once and for all in the laboratory, Angel said. "So we'll save money both in the manufacture of the mirrors and also over the lifetime of the telescope because of the simplicity of permanently holding the mirrors in proper alignment."  

Furnace Starts Heating March 23, Spinning March 28

Steward Observatory Mirror Lab workers will load 51,900 pounds of E6 borosilicate glass, made by the Ohara Corp. of Japan, into the giant rotating furnace March 17 and 18. Of this total, 9,800 pounds will be loaded over the tertiary mirror, which has a more steeply curved radius than the primary mirror.

Mirror Lab "oven pilots" will start heating the furnace at around 4 p.m. on March 23, so the glass will be sufficiently soft at 1,380 degrees Fahrenheit for furnace rotation to begin at about 10:30 p.m. on March 28.

The 39-foot-diameter furnace will spin at almost 7 rotations per minute for just over three days. Spinning at this speed, molten glass will by centrifugal force take on the curve of the primary mirror. Because the tertiary mirror has a deeper curvature, extra glass in the tertiary mold will be eventually ground away later in the mirror-making process.

As the furnace spins, liquid glass will flow between 1,650 hexagonal aluminum silicate cores. The cores create the honeycomb glass structure that is the hallmark of mirrors made at the Steward Observatory Mirror Lab, which is famous for making stiff, lightweight, thermally stable, giant "honeycomb" telescope mirrors. Furnace temperatures will peak at 2,150 degrees Fahrenheit on March 29. LSST partners will mark the occasion with a day's worth of activities celebrating this "high fire" event.

The LSST casting cycle is about four months long. After high fire, the Mirror Lab begins the carefully controlled cooling process. About 100 days later, the cooled mirror blank and cores, which together weigh 85,000 pounds, will be lifted from the furnace and turned on end so cores can be removed. A total 16,000 pounds of glass will be removed from the faceplate and backplate of the mirror during grinding and polishing. The finished mirror will weigh about 35,900 pounds.

The LSST research and development effort is funded in part by the National Science Foundation under Scientific Program Order No. 9 (AST-0551161) through Cooperative Agreement AST-0132798. Additional funding comes from private gifts, in-kind support at Department of Energy laboratories and other LSSTC institutional members.

More Information

Institutional members of the LSST Corp. are: Brookhaven National Laboratory, California Institute of Technology, Carnegie Mellon University, Columbia University, Google Inc., Harvard-Smithsonian Center for Astrophysics, Johns Hopkins University, Stanford University's Kavli Institute for Particle Astrophysics and Cosmology, Las Cumbres Observatory Global Telescope Network Inc., Lawrence Livermore National Laboratory, National Optical Astronomy Observatory, Princeton University, Purdue University, Research Corporation, Stanford Linear Accelerator Center, Pennsylvania State University, The University of Arizona; the University of California at Davis, the University of California at Irvine, the University of Illinois at Urbana-Champaign, the University of Pennsylvania, the University of Pittsburgh and the University of Washington.

Learn more about this release on NOIRLab.edu

Links

  • Steward Observatory Mirror Lab
  • LSST project

Contacts

  • Steve Miller
    Mirror Lab manager
    520-621-9753520-621-9753
    smiller@as.arizona.edu
  • Roger Angel
    Mirror Lab director
    520-621-6541520-621-6541
    rangel@as.arizona.edu
  • Philip Pinto
    LSST simulations
    520-621-8678520-621-8678
    ppinto@as.arizona.edu
  • J. Anthony Tyson
    LSST director
    530-752-3830530-752-3830
    tyson@lsst.org
  • Don Sweeney
    LSST project manager
    520-661-9247520-661-9247
    sweeney@lsst.org
  • Chuck Claver
    LSST project scientist
    520-318-8447520-318-8447
    cclaver@noao.edu
  • Lori Stiles
    UA
    520-626-4402520-626-4402
    lstiles@u.arizona.edu
  • Suzanne Jacoby
    LSST Corp.
    520-881-2626520-881-2626
    sjacoby@lsst.org
  • Douglas Isbell
    NOAO
    520-318-8214520-318-8214
    disbell@noao.edu

Media

M1M3 Acceptance Team
M1M3 Acceptance Team