Homepage
Localize site content
    • About
    • History
    • Who was Vera Rubin?
    • Construction Updates
      • Rubin in Chile
      • Cerro Pachón
      • Observatory Site Selection
      • Organization
      • Leadership
      • Science Collaborations
    • Funding Information
      • Work With Us
      • Jobs Board
    • Explore
      • How Rubin Works
      • Legacy Survey of Space and Time (LSST)
      • Rubin Technology
      • Alert Stream
      • Rubin Numbers
    • Science Goals
    • Rubin Voices
    • Get Involved in Rubin Research
      • Activities, Games, and More
      • Space Surveyors Game
      • Animated Video Series
      • Join Rubin Observatory’s 3200-Megapixel Group Photo!
    • Gallery
      • Main Gallery
    • Slideshows
    • Construction Archive Gallery
    • Media Use Policy
    • News
    • Press Releases
      • Rubin Observatory First Look
      • Rubin First Look Watch Parties
    • Media Resources
    • Press Releases
    • Name Guidelines
    • For Scientists
      • News, events, and deadlines
      • Rubin Science Assemblies
      • Rubin Data Academy
      • Rubin Community Workshop
      • Resources for scientists
      • Rubin Community Forum
      • Early Science Program
      • Workshops and seminars
      • Tutorials
      • LSST Discovery Alliance
      • Code of Conduct
      • Public outreach materials
      • Survey, instruments, and telescopes
      • Key numbers
      • The Legacy Survey of Space and Time (LSST)
      • Instruments
      • Telescopes
      • Data products, pipelines, and services
      • Data access and analysis
      • Recent data releases
      • Alerts and brokers
      • Data processing pipelines
      • Future data products
      • Data Policy
      • Simulation software
      • Documentation and publications
      • Technical documentation
      • How to cite Rubin Observatory
      • Publication policies
      • Glossary & Acronyms
      • Science Collaborations
      • Galaxies Science Collaboration
      • Stars, Milky Way, and Local Volume Science Collaboration
      • Solar System Science Collaboration
      • Dark Energy Science Collaboration
      • Active Galactic Nuclei Science Collaboration
      • Transients and Variable Stars Science Collaboration
      • Strong Lensing Science Collaboration
      • Informatics and Statistics Science Collaboration
    • Citizen Science
      • Committees and teams
      • Science Advisory Committee (SAC)
      • Survey Cadence Optimization Committee (SCOC)
      • Users Committee
      • Community Science Team (CST)
      • Research Inclusion Working Group (RIWG)
      • Project Science Team (PST)
    • Frequently Asked Questions
    • Education
    • Education FAQs
    • Educators
    • Glossary
    • Investigations
    • Calendar
Localize site content
  • Jobs Board
  • Intranet
  • Visual Identity Guide
  • Image Gallery
  • Privacy Policy

Contact us

The U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) Office of Science will support Rubin Observatory in its operations phase to carry out the Legacy Survey of Space and Time. They will also provide support for scientific research with the data. During operations, NSF funding is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF, and DOE funding is managed by SLAC National Accelerator Laboratory (SLAC), under contract by DOE. Rubin Observatory is operated by NSF NOIRLab and SLAC.

NSF is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Funding agency logos

Let's Connect

  • Visit the Rubin Observatory on Facebook
  • Visit the Rubin Observatory on Instagram
  • Visit the Rubin Observatory on LinkedIn
  • Visit the Rubin Observatory on Twitter
  • Visit the Rubin Observatory on YouTube
    1. Explore
    2. How Rubin Works
    3. Rubin Technology
    4. Differential Image Motion Monitor (DIMM) Tower

    Differential Image Motion Monitor (DIMM) Tower

    The challenge to viewing and imaging celestial objects from Earth’s surface is that Earth’s atmosphere distorts light from space. When you look up at the stars and see them twinkle, you’re experiencing this phenomenon; light from stars is (generally) constant, but the light that reaches your eyes has been pushed around by turbulence in Earth’s atmosphere. That turbulence is caused by the interaction of varying temperature and density layers between Earth’s surface and space. Twinkling stars might be pretty to look at, but they’re pretty annoying for scientists who want a crisp, clear view of the objects they’re studying.

    While it’s not possible to eliminate the effects of Earth’s atmosphere on the images taken by a ground-based, wide-area survey telescope like Rubin Observatory, there are methods to help us predict and understand those effects. Near the main Rubin Observatory building on the summit of Cerro Pachón stands a white tower, and on that tower we've mounted an instrument called a Differential Image Motion Monitor, or DIMM. The DIMM will operate at night when Rubin Observatory is observing, monitoring turbulence in the atmosphere above the telescope. Data from the DIMM will be sent to Rubin Observatory’s Engineering and Facility Database, where it will be integrated with other data from Rubin Observatory facility-monitoring systems. Over time, information collected by the DIMM and other environmental sensors around the facility will be used to develop a computational fluid dynamics model of the atmosphere. By taking data on different points in the sky throughout the night we can determine, with increasing accuracy as we continue to refine the model, how the air above the summit is behaving. Another, portable DIMM will also be used to measure the turbulence from different locations around the immediate area of the telescope. These data in particular will help determine how the topography of the summit area influences atmospheric turbulence, and will inform the Rubin Observatory team on how to configure the telescope to optimize Rubin Observatory image quality in various environmental conditions.

    The two DIMMs used at Rubin Observatory were manufactured in Germany, and are exact replicas of each other. When they arrived in Chile, they were tested together to confirm that they both perform identically. The DIMMs and Rubin Observatory operate independently of each other; the DIMM takes its data using stars that will be too bright for Rubin Observatory to image, and the DIMM has much less sky coverage than Rubin Observatory. Compared to the Rubin Observatory telescope and camera, the DIMM is a very simple instrument. But the purpose it serves is important: helping us better collect, understand, and interpret the data produced by Rubin Observatory.