Homepage
Localize site content
    • About
    • History
    • Who was Vera Rubin?
    • Construction Updates
      • Rubin in Chile
      • Cerro Pachón
      • Observatory Site Selection
      • Organization
      • Leadership
      • Science Collaborations
    • Funding Information
      • Work With Us
      • Jobs Board
    • Explore
      • How Rubin Works
      • Legacy Survey of Space and Time (LSST)
      • Rubin Technology
      • Alert Stream
      • Rubin Numbers
    • Science Goals
    • Rubin Voices
    • Get Involved in Rubin Research
      • Activities, Games, and More
      • Space Surveyors Game
      • Animated Video Series
      • Join Rubin Observatory’s 3200-Megapixel Group Photo!
    • Gallery
      • Main Gallery
    • Slideshows
    • Construction Archive Gallery
    • Media Use Policy
    • News
    • Press Releases
      • Rubin Observatory First Look
      • Rubin First Look Watch Parties
    • Media Resources
    • Press Releases
    • Name Guidelines
    • For Scientists
      • News, events, and deadlines
      • Rubin Science Assemblies
      • Rubin Data Academy
      • Rubin Community Workshop
      • Resources for scientists
      • Rubin Community Forum
      • Early Science Program
      • Workshops and seminars
      • Tutorials
      • LSST Discovery Alliance
      • Code of Conduct
      • Survey, instruments, and telescopes
      • Key numbers
      • The Legacy Survey of Space and Time (LSST)
      • Instruments
      • Telescopes
      • Data products, pipelines, and services
      • Data access and analysis
      • Recent data releases
      • Alerts and brokers
      • Data processing pipelines
      • Future data products
      • Data Policy
      • Simulation software
      • Documentation and publications
      • Technical documentation
      • How to cite Rubin Observatory
      • Publication policies
      • Glossary & Acronyms
      • Science Collaborations
      • Galaxies Science Collaboration
      • Stars, Milky Way, and Local Volume Science Collaboration
      • Solar System Science Collaboration
      • Dark Energy Science Collaboration
      • Active Galactic Nuclei Science Collaboration
      • Transients and Variable Stars Science Collaboration
      • Strong Lensing Science Collaboration
      • Informatics and Statistics Science Collaboration
    • Citizen Science
      • Committees and teams
      • Science Advisory Committee (SAC)
      • Survey Cadence Optimization Committee (SCOC)
      • Users Committee
      • Community Science Team (CST)
      • Research Inclusion Working Group (RIWG)
      • Project Science Team (PST)
    • Frequently Asked Questions
    • Education
    • Education FAQs
    • Educators
    • Glossary
    • Investigations
    • Calendar
Localize site content

Let's Connect

  • Visit the Rubin Observatory on Facebook
  • Visit the Rubin Observatory on Instagram
  • Visit the Rubin Observatory on LinkedIn
  • Visit the Rubin Observatory on Twitter
  • Visit the Rubin Observatory on YouTube
  • Jobs Board
  • Intranet
  • Visual Identity Guide
  • Image Gallery
  • Privacy Policy

Contact us

The U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) Office of Science will support Rubin Observatory in its operations phase to carry out the Legacy Survey of Space and Time. They will also provide support for scientific research with the data. During operations, NSF funding is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF, and DOE funding is managed by SLAC National Accelerator Laboratory (SLAC), under contract by DOE. Rubin Observatory is operated by NSF NOIRLab and SLAC.

NSF is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Funding agency logos
  1. News
  2. Rubin Observatory will Inspire a New Era in Space Missions Without Ever Leaving the Ground
Rubin Observatory will discover millions of new asteroids to consider for up-close exploration

Related News Posts

Loading the News...
Go Back to News Posts

Rubin Observatory will Inspire a New Era in Space Missions Without Ever Leaving the Ground

Vera C. Rubin Observatory’s detailed, big-picture view of our Solar System and ability to quickly detect and track moving objects will provide a gold mine of data to benefit space mission planning and preparation
February 7, 2024
Vera C. Rubin Observatory will help scientists identify intriguing targets to prioritize for future space missions by detecting millions of new Solar System objects, and by revealing — in more detail than we’ve ever seen — the broader context in which these objects exist. Additionally, Rubin may alert scientists to the existence of objects like asteroids, comets, or visiting interstellar objects in time to determine their trajectories and prepare space missions to study them.

We live in a very exciting time for Solar System exploration, with recent headlines announcing new results from space missions like NASA’s OSIRIS-REx, Lucy, and Psyche, and ESA’s Juice. These uncrewed spacecraft have been visiting our cosmic neighbors and returning close-up images, detailed information, and even extraterrestrial rocks and dust to Earth. But space missions are only possible with extensive research, preparation, and guidance by scientists here on Earth — and observations from ground-based astronomical observatories are critical to this process. Vera C. Rubin Observatory, jointly funded by the US National Science Foundation (NSF) and the US Department of Energy (DOE), will soon start producing one of the largest and most uniform astronomical data sets scientists have ever had, providing them with a treasure trove of information they can use to plan and prepare the next generation of scientifically rewarding and ambitious space missions.

Rubin Observatory is located in Chile and will begin science operations in late 2025. Rubin Observatory is a Program of NSF NOIRLab, which, along with SLAC National Accelerator Laboratory, will cooperatively operate Rubin.

The Solar System, our cosmic backyard, is teeming with billions of small rocky and icy objects. Most formed in early times, such as near-Earth objects and Trojan asteroids, while others are distant travelers from solar systems beyond our own, known as interstellar objects. 

Over the ten-year Legacy Survey of Space and Time (LSST), Rubin Observatory will scan the entire southern hemisphere sky every few nights with an 8.4-meter, fast-moving telescope and the largest digital camera in the world, revealing millions of previously unknown Solar System objects for the very first time. Rubin Observatory’s survey is expected to potentially quintuple our current census of known objects in the Solar System, which scientists have been painstakingly building for more than 200 years.

“Nothing will come close to the depth of Rubin’s survey and the level of characterization we will get for Solar System objects,” says Siegfried Eggl, Assistant Professor at University of Illinois Urbana-Champaign and Lead of the Inner Solar System Working Group within the Rubin/LSST Solar System Science Collaboration. “It is fascinating that we have the capability to visit interesting objects and look at them close-up. But to do that we need to know they exist, and we need to know where they are. This is what Rubin will tell us.”

While detecting millions of new individual objects, Rubin will also provide information about the Solar System’s broader landscape and reveal whole regions that contain scientifically interesting or unique objects to consider for future space missions.

“If you think of Rubin as looking at a beach, you see millions and millions of individual sand grains, that together constitute the entire beach,” says Eggl, “There might be an area of yellow sand, or volcanic black sand, and a space mission to an object in that region could investigate what makes it different. Often we don’t know what’s weird or interesting unless we know the context it’s in.”

In addition to providing astronomers and astrophysicists with the most comprehensive, big-picture view of the southern sky to date, Rubin will also alert them to changes in the night sky within 60 seconds of detecting them. This early warning system could prompt scientists to start preparing a space mission to a fast-moving target — perhaps even a visiting interstellar object, suggests Eggl. “Rubin is capable of giving us the prep time we need to launch a mission to intercept an interstellar object. That’s a synergy that’s very unique to Rubin, and unique to the time we’re living in.” In fact, such missions are already in development — the JAXA/ESA Comet Interceptor mission will launch in 2029 and await the discovery (likely by Rubin) of a visitable long-period Solar System comet or interstellar object passing by the Sun for the first time.

Rubin’s detailed and frequent observations of Solar System objects and their locations could benefit space missions already in progress as well, alerting scientists to worthwhile observing opportunities near a spacecraft’s path, or within reach via a small detour. NASA’s Lucy, for example, is on a 12-year mission that Rubin is well-poised to influence. Lucy, the first space mission sent to study asteroids trapped in and around Jupiter’s orbit, has already returned valuable scientific information — and some unexpected results. And, when Rubin’s survey begins, smaller, fainter asteroids near Lucy’s future path will come into view for scientists here on Earth for the first time, potentially offering new flyby opportunities — and new scientific surprises — we can’t begin to predict. 

“With our current telescopes we’ve essentially been looking at the big boulders on the beach,” says Eggl, “but Rubin will zoom in on the finer grains of sand.”

More Information

Rubin Observatory is a joint initiative of the US National Science Foundation (NSF) and the Department of Energy (DOE). Its primary mission is to carry out the Legacy Survey of Space and Time, providing an unprecedented data set for scientific research supported by both agencies. Rubin is operated jointly by NSF NOIRLab and SLAC National Accelerator Laboratory (SLAC). NOIRLab is managed for NSF by the Association of Universities for Research in Astronomy (AURA) and SLAC is operated for DOE by Stanford University. France provides key support to the construction and operations of Rubin Observatory through contributions from CNRS/IN2P3. Additional contributions from a number of international organizations and teams are acknowledged.

The US National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

NSF NOIRLab (National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (in cooperation with DOE’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O’odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.

Learn more about this release on NOIRLab.edu

Links

  • Vera C. Rubin Observatory website
  • Vera C. Rubin Observatory images
  • More Rubin images
  • Rubin videos
  • Rubin multimedia resources

Contacts

  • Siegfried Eggl
    Assistant Professor at University of Illinois Urbana-Champaign
    Lead, Inner Solar System Working Group within the Rubin/LSST Solar System Science Collaboration
    eggl@illinois.edu
  • Kristen Metzger
    Communications Manager for Education and Public Outreach, Rubin Observatory
    kristen.metzger@noirlab.edu
  • Bob Blum
    Director for Operations, Vera C. Rubin Observatory, NSF NOIRLab
    +1 520-318-8233+1 520-318-8233
    bob.blum@noirlab.edu
  • Željko Ivezić
    Director of Rubin Construction
    Professor of Astronomy, University of Washington/AURA
    +1-206-403-6132+1-206-403-6132
    ivezic@uw.edu
  • Josie Fenske
    Communications
    NSF NOIRLab
    josie.fenske@noirlab.edu
  • Manuel Gnida
    Media Relations Manager, SLAC National Accelerator Laboratory
    +1 650-926-2632 (office)+1 650-926-2632 (office)
    mgnida@slac.stanford.edu

Media

Rubin Observatory will discover millions of new asteroids to consider for up-close exploration
Rubin Observatory will discover millions of new asteroids to consider for up-close exploration
Rubin at Sunset in December 2023
Rubin at Sunset in December 2023
Siegfried Eggl discusses how Rubin Observatory will contribute to space mission planning
Siegfried Eggl discusses how Rubin Observatory will contribute to space mission planning
Siegfried Eggl comenta sobre cómo el Observatorio Rubin aportará a la planificación de las misiones espaciales
Siegfried Eggl comenta sobre cómo el Observatorio Rubin aportará a la planificación de las misiones espaciales

Tags

  • #space missions
  • #science release
  • #science